skip to main content


Search for: All records

Creators/Authors contains: "Okamoto, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Faults have grooves that are formed by abrasion and wear during slip. Recent observations indicate that this grooving is only a large‐scale feature, indicating brittle behavior has a length scale limit. The connection between this scale and earthquake behavior remains limited because no examples exist from a proven seismogenic fault. Here, we address this problem and analyze differences in this scale between lithologies to further our understanding of the underlying mechanics. This study uses samples from the Mt. Vettoretto fault collected after the Norcia earthquake of 2016. We imaged fault topography with a white light interferometer and 10 μm resolution structure from motion and then calculated a Monte Carlo version of root mean square roughness. We found a minimum scale of grooving of ~100 μm. In comparing this fault to the Corona Heights fault, we find that this minimum grooving scale is consistent with predictions based on material properties.

     
    more » « less